

Triclinic
 $P\bar{1}$
 $a = 8.900(2)$ Å
 $b = 11.508(2)$ Å
 $c = 7.7675(10)$ Å
 $\alpha = 94.713(14)^\circ$
 $\beta = 107.873(13)^\circ$
 $\gamma = 67.784(14)^\circ$
 $V = 700.4(2)$ Å³
 $Z = 2$
 $D_x = 1.495$ Mg m⁻³
 D_m not measured

Cell parameters from 25 reflections
 $\theta = 30\text{--}40^\circ$
 $\mu = 0.398$ mm⁻¹
 $T = 293(2)$ K
 Block
 $0.30 \times 0.25 \times 0.20$ mm
 Colourless

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1214). Services for accessing these data are described at the back of the journal.

Data collection

Rigaku AFC-7R diffractometer
 $\omega/2\theta$ scans
 Absorption correction: none
 6290 measured reflections
 3203 independent reflections
 2489 reflections with
 $I > 2\sigma(I)$

$R_{\text{int}} = 0.018$
 $\theta_{\text{max}} = 27.51^\circ$
 $h = -10 \rightarrow 11$
 $k = -14 \rightarrow 14$
 $l = -10 \rightarrow 9$
 3 standard reflections
 every 200 reflections
 intensity decay: none

Refinement

Refinement on F^2
 $R[F^2 > 2\sigma(F^2)] = 0.036$
 $wR(F^2) = 0.099$
 $S = 1.026$
 3200 reflections
 227 parameters
 H atoms treated by a
 mixture of independent
 and constrained refinement

$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2$
 $+ 0.1658P]$
 where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{\text{max}} = 0.004$
 $\Delta\rho_{\text{max}} = 0.267$ e Å⁻³
 $\Delta\rho_{\text{min}} = -0.292$ e Å⁻³
 Extinction correction: none
 Scattering factors from
*International Tables for
 Crystallography* (Vol. C)

Table 1. Selected geometric parameters (Å, °)

S1—O1	1.436(2)	S1—C11	1.756(2)
S1—N2	1.564(2)	S1—C21	1.761(2)
O1—S1—N2	120.21(11)	O1—S1—C21	110.17(10)
O1—S1—C11	109.07(9)	N2—S1—C21	102.92(10)
N2—S1—C11	103.61(10)	C11—S1—C21	110.44(9)

The hydrogen sulfate anion was found to be disordered. Three sets of O atoms were refined with equivalent displacement parameters and idealized tetrahedral geometries. Aromatic H atoms were constrained with a riding model [$U_{\text{H}} = 1.2U_{\text{iso}}(\text{C})$]. Both N—H and hydrogen sulfate H atoms (major component only) were located in a difference map and their coordinates refined with a fixed displacement parameter [$U_{\text{H}} = 1.2U_{\text{iso}}(\text{N})$ and $U_{\text{H}} = 0.08 \times 10^3$ Å², respectively].

Data collection: *MSC/AFCS Diffractometer Control Software* (Molecular Structure Corporation, 1988). Cell refinement: *MSC/AFCS Diffractometer Control Software*. Data reduction: *TEXSAN PROCESS* (Molecular Structure Corporation, 1985). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993). Molecular graphics: *XP* (Siemens, 1994). Software used to prepare material for publication: *SHELXL93*.

The authors would like to thank the University of Cambridge, the EPSRC and the Newton Trust (studentship to JJL) for support.

References

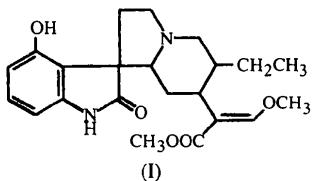
Becke-Goehring, M. & Latscha, H. A. (1962). *Angew. Chem. Int. Ed. Engl.* **1**, 551–551.
 Furukawa, N., Yoshimura, T. & Oae, S. (1973). *Tetrahedron Lett.* **23**, 2113–2116.
 Molecular Structure Corporation (1985). *TEXSAN. TEXRAY Structure Analysis Package*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
 Molecular Structure Corporation (1988). *MSC/AFCS Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
 Sheldrick, G. M. (1990). *Acta Cryst. A* **46**, 467–473.
 Sheldrick, G. M. (1993). *SHELXL93. Program for the Refinement of Crystal Structures*. University of Göttingen, Germany.
 Siemens (1994). *XP. Interactive Molecular Graphics Program*. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). **C54**, 399–401

Rotundifoline, an Oxoindole Alkaloid

ASHISH MUKHOPADHYAY,^a SAMAR KUMAR TALAPATRA,^a ASHIN KUMAR SAHA,^b PRANAB KUMAR LALA,^b SUNIL KUMAR MAZUMDAR^c AND KINKINI BHATTACHARYYA^c

^aPhysics Department, Jadavpur University, Jadavpur, Calcutta 700 032, India, ^bDepartment of Pharmaceutical Technology, Jadavpur University, Jadavpur, Calcutta 700 032, India, and ^cDepartment of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India. E-mail: msskm@iacs.ernet.in


(Received 16 January 1997; accepted 14 October 1997)

Abstract

In the title compound, methyl 2-{6'-ethyl-2',3',5',6',7',8'-hexahydro-4-hydroxy-2-oxo-spiro[1H-indole-3(2H),1',8a'H]-indolizin]-7'-yl}-3-methoxyacrylate, C₂₂H₂₈N₂O₅, the indole molecule is not planar. The planarity of the atom group C13—N1—C2=O1 of the indole moiety and the short N1—C2 bond of 1.363(11) Å are due to delocalization of the benzoid electrons, which extend over the atoms N1, C2 and O1. The five-membered ring of the indolizine moiety is puckered and the six-membered ring fused to it has a normal chair conformation. The methoxycarbonyl and the methoxy groups have a *trans* configuration about the C16=C17 bond in the acrylate moiety. The structure is stabilized by intramolecular hydrogen bonding of the type O—H···N and intermolecular hydrogen bonding of the type N—H···O.

Comment

Indole alkaloids are known for their interesting chemical and physiological activities. As part of a continuing structural study of indole and oxoindole compounds (Chakraborty *et al.*, 1985, 1991; Chakraborty & Talapatra, 1986), the structural analysis of the title compound, (I), was undertaken to confirm the conclusion of chemical work and to provide further structural data for the indole alkaloid obtained from the natural source.

The title compound was obtained from the leaves of *Mitragyna rubro stipulata* (schum), from Havil, Uganda, East Africa (Shellard & Lala, 1978). The genus *Mitragyna* is known to possess opiate, analgesic and sedative properties (Shellard, 1972). The individual bond lengths and angles of the indole ring are in agreement with those of similar indole alkaloids, such as (\pm)-21-oxoisopteropodine (Lynch *et al.*, 1991) and mitragyanine hydroiodide (Zacharias *et al.*, 1965). The indole system is not planar: its two rings are inclined to each other by 3.5 (3) $^\circ$ along the C8—C13 bond. The atoms comprising the C13—N1—C2=O1 least-squares plane do not deviate from it by more than 0.03 \AA . This planarity and the short N1—C2 bond of 1.363 (11) \AA are due to the delocalized π -electron system, which extends over N1, C2 and O1 (James & Williams, 1972). The five-membered pyrrole ring is slightly puckered, the puckering parameter q_2 (Cremer & Pople, 1975) being 0.492 (8) \AA .

The methoxy and methoxycarbonyl groups are attached mutually *trans* about the C16=C17 double bond of the acrylate moiety.

The puckering parameters for the piperidine ring have been calculated using the method of Cremer & Pople (1975) and are $\varphi_2 = 62(9)^\circ$, $q_2 = 0.046(8) \text{\AA}$, $q_3 = 0.600(8) \text{\AA}$, $\theta = 4.4(8)^\circ$ and $Q_T = 0.602(8) \text{\AA}$. The puckering parameters indicate a slightly distorted chair conformation; the Q_T value lies close to the value of 0.63 \AA for an ideal cyclohexane chair (Cremer & Pople, 1975). The five-membered ring of the indolizine system, which is connected *via* the spiro atom C7 to the pyrrole ring of the indole moiety is puckered with $\varphi_2 = 151(7)^\circ$ and $q_2 = 0.064(8) \text{\AA}$.

The NH group of the pyrrole ring is engaged in an intermolecular hydrogen bond with atom O5 of the hydroxy group in a neighbouring molecule, having N1—O5ⁱ 2.805 (9), H1N—O5ⁱ 2.10 \AA and N1—H1N—O5ⁱ 140 $^\circ$ [symmetry code: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$]. The hydroxy moiety also forms a rather strong

intramolecular hydrogen bond with the N4 atom of the indolizine moiety, with O5—N4 2.613 (10), H5O—N4 1.81 (8) \AA and O5—H5O—N4 168 (4) $^\circ$.

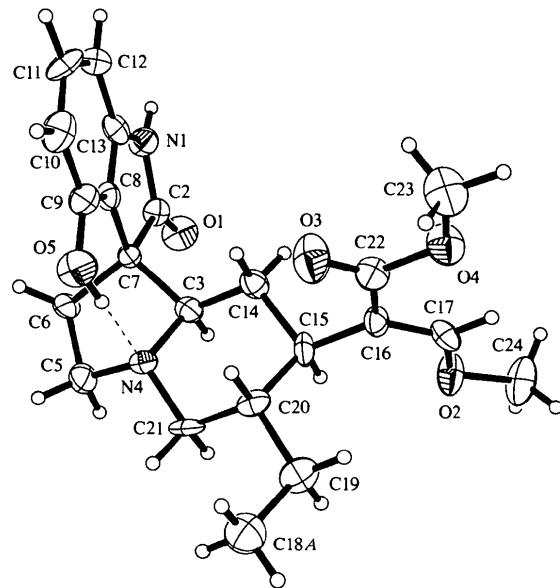


Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the numbering of the non-H atoms. H atoms have been assigned small arbitrary radii for clarity. Only the major [0.71 (6)] component of the disorder affecting C18 is shown.

Experimental

The title compound was obtained from a solution of the compound in absolute alcohol, by slow evaporation at room temperature.

Crystal data

C ₂₂ H ₂₈ N ₂ O ₅	Mo $K\alpha$ radiation
$M_r = 400.46$	$\lambda = 0.71073 \text{\AA}$
Orthorhombic	Cell parameters from 25 reflections
$P2_12_12_1$	$\theta = 10-15^\circ$
$a = 8.313(1) \text{\AA}$	$\mu = 0.090 \text{ mm}^{-1}$
$b = 13.367(1) \text{\AA}$	$T = 293(2) \text{ K}$
$c = 18.981(1) \text{\AA}$	Plate
$V = 2109.2(3) \text{\AA}^3$	$0.26 \times 0.24 \times 0.10 \text{ mm}$
$Z = 4$	Colourless
$D_x = 1.261 \text{ Mg m}^{-3}$	
D_m not measured	

Data collection

Enraf-Nonius CAD-4	$\theta_{\text{max}} = 25.1^\circ$
diffractometer	$h = 0 \rightarrow 9$
$\omega-2\theta$ scans	$k = 0 \rightarrow 15$
Absorption correction: none	$l = 0 \rightarrow 22$
2141 measured reflections	1 standard reflection
2141 independent reflections	frequency: 30 min
1029 reflections with	intensity decay: negligible
$I > 2\sigma(I)$	

Refinement

Refinement on F^2
 $R[F^2 > 2\sigma(F^2)] = 0.082$
 $wR(F^2) = 0.245$
 $S = 1.058$
2141 reflections
264 parameters
H atoms: see below
 $w = 1/[\sigma^2(F_o^2) + (0.12P)^2$
 $+ 1.51P]$
where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{\text{max}} = 0.013$

$\Delta\rho_{\text{max}} = 0.33 \text{ e \AA}^{-3}$
 $\Delta\rho_{\text{min}} = -0.27 \text{ e \AA}^{-3}$
Extinction correction:
SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.013 (4)
Scattering factors from *International Tables for Crystallography* (Vol. C)

Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1978). *MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data*. Universities of York, England, and Louvain, Belgium.
Nardelli, M. (1983). *Comput. Chem.* **7**, 95–98.
Sheldrick, G. M. (1994). *SHELXTL/PC*. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). *SHELXL97. Program for the Refinement of Crystal Structures*. University of Göttingen, Germany.
Shellard, E. J. (1972). Personal Communication.
Shellard, E. J. & Lala, P. K. (1978). *Götti Plant. Med.* **33**, 63.
Zacharias, D. E., Rosenstien, R. D. & Jeffery, G. A. (1965). *Acta Cryst.* **18**, 1039–1043.

One atom (C18) was found to be affected by disorder: this was modelled in terms of two unequal sites of occupancies 0.71 (6) and 0.29 (6). Residual disorder is thought to be largely responsible for the high conventional R values. The distances between these isotropic components and C19 were restrained to be 1.52 (1) Å. H atoms were included at geometrically calculated positions, except for the hydroxy H atom (H5O) on O5 which was found from a circular Fourier synthesis. They were then allowed to ride on their parent atoms with $U_{\text{iso}} = xU_{\text{eq}}(\text{parent})$, where $x = 1.5$ for methyl and hydroxy H atoms and $x = 1.2$ for all others. Standard uncertainties on C–C distances range from 0.009 to 0.014 Å.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989). Cell refinement: *CAD-4 Software*. Data reduction: *CAD-4 Software*. Program(s) used to solve structure: *MULTAN78* (Main *et al.*, 1978). Program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997). Molecular graphics: *SHELXTL/PC* (Sheldrick, 1994). Software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1983).

We wish to thank Professor S. P. SenGupta, Department of Materials Science, Indian Association for the Cultivation of Science, Calcutta, for extending the facilities and for his keen interest in our work. We are also grateful to the Council of Scientific and Industrial Research, Government of India, for financial assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1144). Services for accessing these data are described at the back of the journal.

References

Chakraborty, D. K., Mukhopadhyay, A. & Talapatra, S. K. (1991). *Acta Cryst.* **C47**, 592–594.
Chakraborty, D. K. & Talapatra, S. K. (1986). *Acta Cryst.* **C42**, 1435–1437.
Chakraborty, D. K., Talapatra, S. K. & Chatterjee, A. (1985). *Acta Cryst.* **C41**, 1363–1364.
Cremer, D. & Pople, J. A. (1975). *J. Am. Chem. Soc.* **97**, 1354–1358.
Enraf–Nonius (1989). *CAD-4 Software*. Enraf–Nonius, Delft, The Netherlands.
James, M. N. G. & Williams, G. J. B. (1972). *Can. J. Chem.* **50**, 2407–2412.
Lynch, V. M., Mortimore, S. F., Martin, S. F. & Davis, B. E. (1991). *Acta Cryst.* **C47**, 234–236.

Acta Cryst. (1998). **C54**, 401–403

6-Allyl-8,8-dimethyl-3-oxo-2-(1-phenylethyl)-2-azabicyclo[4.3.0]non-1(9)-ene-5-carboxylic Acid, a Key Compound in the Asymmetric Synthesis of Quadrone

ANGÈLE CHIARONI,^a CLAUDE RICHE,^a DUMAS FRANÇOISE,^b MARC MAUDUIT^b AND CHRISTINE MIET^b

^a*Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif sur Yvette CEDEX, France, and ^bBIOCIS, Université de Paris Sud, Centre d'études pharmaceutiques, Laboratoire de Synthèse Organique, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry CEDEX, France. E-mail: claude.riche@icsn.cnrs-gif.fr*

(Received 30 April 1997; accepted 4 November 1997)

Abstract

The X-ray structure analysis of the title compound, $C_{22}H_{27}NO_3$, establishes unambiguously the relative and absolute configurations of the two asymmetric C atoms, C5 (*S*) and C6 (*S*), based on the known *R* absolute configuration of the C10 atom, and provides essential information on the transition state of the Michael reaction leading to its formation.

Comment

The enantioselective synthesis of quaternary carbon centres through the Michael addition of chiral imines to electrophilic alkenes under neutral conditions (d'Angelo *et al.*, 1992) has been used for the asymmetric synthesis of a large number of biologically active compounds (d'Angelo *et al.*, 1993). For our part, we were interested in the asymmetric synthesis of (–)-quadrone, (1), an antitumour compound isolated from the fungus